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We show several surprising phenomena that occur in an extremely simple system of a single frictionless,
inelastic, spherical particle falling under gravity through a symmetric funnel. One might naively expect that
particles would fall through funnels with steeper sides more quickly, exert a smaller total impulse on the funnel
walls, and lose less energy. However, we show that there are special ranges of angles of the funnel walls for
which exactly the opposite occurs. Typically, the particle will experience a sequence of collisions that is highly
sensitive to the location at which it enters the funnel and nearby particle trajectories become widely dispersed.
However, in the special angular ranges this is not the case and the particle can experience sequences of
collisions that have a highly coherent structure. We provide a theoretical analysis that can predict and explain
this surprising behavior.
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I. INTRODUCTION

There are a broad range of industrial applications in
which particles fall under gravity and interact inelastically
with rigid boundaries. In many applications devices are de-
signed to take falling particles and guide them into a thin slot
or hole. We consider an extremely simple example of a
single inelastic particle falling under gravity through a sym-
metric funnel. Despite the simplicity of the system we show
that surprising dynamics can occur for funnels whose walls
are inclined at certain angles.

In applications there are a number of objectives that such
devices may be required to achieve. These include reducing
the speed of particles exiting the machine or minimizing the
time that particles spend in the device so that interactions
with other particles and jamming are less likely. Details of
the particle trajectories and the impulses experienced by such
devices are critical for understanding how these objectives
can be best achieved. This knowledge is also required to
develop strategies for minimizing excessive wear on devices.

Flows with large numbers of particles in funnels have
been widely studied and a number of important results have
been obtained �1–10�. A wide range of work has been done
that includes cases in which the stresses are dominated by
frictional forces and cases in which the stresses are domi-
nated by interparticle collisions �11�. However, despite its
obvious importance in many applications, the case of a
single particle falling through a hopper has received much
less attention.

Systems that contain only a single particle or a small
number of particles appear to be extremely simple, but can
contain surprisingly subtle and complex dynamics. Studies
of this type of system have led to important insights into the
way in which granular materials behave. Mehta and Luck
�12� and Luck and Mehta �13� showed that a single particle
moving under gravity on a vibrating plate can give rise to
highly unexpected behavior, such as abrupt termination of
period-doubling sequences. McNamara and Young �14�
showed that a finite number of particles is required to obtain
an infinite number of collisions in a finite time. Wylie and
Zhang �15� have shown that two driven inelastic particles

can experience a bifurcation in which large numbers of com-
plicated periodic orbits collapse onto a single simple orbit.

II. FORMULATION

In this paper, we consider a frictionless, inelastic particle
of radius a falling under gravity g through a symmetric fun-
nel with walls aligned at an angle � to the horizontal and a
gap of size d at the bottom of the funnel. The particle is
released with zero initial velocity with its center at a height
H above the bottom of the funnel and at a horizontal location
x0 measured from the central axis of the funnel �see Fig. 1�.
When the particle collides with the walls it experiences an
inelastic collision with coefficient of restitution e. Here e is
defined as the ratio of the velocity normal to the wall imme-
diately after to that immediately before the collision.

We will consider the case where particles are dropped into
the funnel at a random horizontal location x0. For simplicity
we consider the distribution in which all locations have uni-
form probability of being chosen. Other distributions yield
similar behavior. We note that the dynamics of the particle
are identical for both a two-dimensional funnel and a radially

FIG. 1. Sketch of a system in which a particle falls through a
funnel with an angle �.
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symmetric funnel. We nondimensionalize lengths by H,
times by �H /g, and velocities by �Hg. In this paper, we will
focus on the effects of inelasticity e and funnel angle �.

The particle trajectory is composed of parabolic segments
punctuated by collisions with the funnel walls. Each para-
bolic segment of the trajectory ends in one of three possible
events: the particle collides with the left funnel wall, collides
with the right funnel wall, or exits the funnel through the
gap. The process of determining which of the three events
occur leads to the very complicated nonlinear dynamics of
this system. The implementation of numerical simulations of
this complicated system is quite straightforward. When the
event corresponds to a collision with one of the walls, the
particle velocity is updated by performing an inelastic colli-
sion with the wall and the procedure is repeated until the
particle exits the funnel. The phenomenon of inelastic col-
lapse may occur, in which the particle may experience an
infinite number of collisions with one of the walls in a finite
time. This is easy to handle in simulations since the time of
inelastic collapse can be determined analytically. After the
collapse the particle will simply slide down the wall.

III. RESULTS

In our simulations, we choose H=g=1, a=0.01, and d
=0.04. For given values of e and �, we simulate 4000 sample
trajectories with uniformly spaced initial horizontal locations
x0. For each x0, we record the locations and the velocities of
the particle when collisions occur. Using this information, it
is straightforward to compute quantities such as the duration
that the particle stays in the funnel, ��x0�; the energy loss as
the particle falls through the funnel; and the total impulse
exerted by the particle on the funnel walls. In Fig. 2, we
show the time that the particle stays in the funnel averaged
over the horizontal release position as a function of � for
different values of e. Intuitively, one would expect that
steeper funnels �i.e., larger values of �� would lead to the
particle, on average, spending less time in the funnel. How-

ever, this is only the case when e�0.51. . .. For larger values
of e, there are ranges of � in which the particle will, on
average, stay longer in a steeper funnel. This is clearly dem-
onstrated for e=0.8 and 0.99 in Fig. 2 where the particle
stays significantly longer in a funnel with �=46° than a fun-
nel with �=45°. This seems highly counterintuitive, and we
will analyze theoretically why these specific angular ranges
have this property.

In industrial applications, the impulse exerted on the walls
is an important quantity for understanding machine wear. In
computing the impulse, one must include the contribution
after inelastic collapse when the particle slides down the
wall. In Fig. 3, we show the average impulse as a function of
� for different values of e. Figure 3 shows that the behavior
for the average total impulse is very similar to the behavior
for the average duration shown in Fig. 2. That is, a steeper
funnel can experience a larger average total impulse than a
less steep funnel.

When the particle collides with the funnel boundaries, it
loses energy. Figure 4 shows the average energy loss when
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FIG. 2. The average duration is plotted against � for different
values of e. This shows that the average duration can be a non-
monotonic function of �.
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FIG. 3. The average impulse is plotted against � for different
values of e. The average impulse can be a nonmonotonic function
of �.
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FIG. 4. The average energy loss is plotted against � for different
values of e.
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the particle exits the funnel. It reveals several interesting
phenomena. First, for e close to unity, there are sudden
jumps in the average energy loss as � varies. The angles � at
which these jumps occur coincide with those observed in
Fig. 2 and 3. We will explain the cause of these jumps later.
Second, one might naively expect that, on average, a particle
with smaller e would lose more energy than the one with
larger e. However, Fig. 4 shows that the energy loss is not a
monotonic function of e. The curve for e=0.8 has higher
energy loss than the curves for other values of e shown. This
is due to the fact that both energy loss per collision and
number of collisions contribute to the energy loss. The con-
tribution from the first factor is a monotonic function of e,
but the combined effects from both factors are not. Third, for
e�0.1, all curves almost coincide. When e�1, the particle
will typically experience rapid collisions with only one of the
funnel walls before exiting the funnel. When the particle
only collides with one of the walls the velocity component
parallel to that wall is unaffected by collisions, whereas the
component perpendicular to the wall will be damped by
rapid collisions. So the remaining energy is dominated by the
velocity component parallel to the boundary which is inde-
pendent of e when e is sufficiently small. This is in contrast
to the case where the particle collides with both boundaries.
In this case, the two different boundaries have different nor-
mal vectors and so change the components of velocity in
different directions. Furthermore, the velocity component
perpendicular to the boundary is a monotonic decreasing
function of �. Therefore the energy loss is a monotonic de-
creasing function of � when e�1. Fourth, as � approaches
90°, few collisions will occur. Therefore the energy loss ap-
proaches zero for all values of e when � approaches 90°.

Now we examine the sudden jumps in duration and en-
ergy loss. These jumps can clearly be seen in Figs. 2–4 as �

changes from 45° to 46° and from 59° to 61°. To investigate
these dramatic changes, we compare the duration spent in the
funnel as a function of the input location x0 in funnels with
�=59° �Fig. 5�a�� and �=61° �Fig. 5�b��. In both Figs. 5�a�
and 5�b�, e=0.99. Despite the small difference in �, the be-
havior is completely different. For �=59°, the duration is
highly sensitive to initial location whereas for �=61° the
duration is extremely robust and there are wide ranges of
injection locations where the duration remains almost con-
stant.

We now examine the typical trajectories that occur in fun-
nels with �=59° and �=61° in Fig. 6. The particle loses
energy during collisions, and so the collision locations have a
tendency of moving downwards toward the exit. This is true
for both funnel angles shown in Figs. 6�a� and 6�b�. How-
ever, for �=61° �Fig. 6�b�� the particle experiences a very
coherent sequence of collisions with a simple repeating pat-
tern. After each pattern the trajectory remains relatively
tightly confined and the collision locations move slowly
downward toward the exit. During the bulk of the trajectory
the collision points are not near the exit. This means that the
particle experiences a relatively large number of collisions,
loses a large amount of energy, and takes a long time to exit
the funnel. In contrast, for �=59° �Fig. 6�a�� the particle
follows a trajectory with no clear pattern of collisions. The
locations of collisions are widely dispersed throughout the
funnel. Consequently, there is a larger probability of the par-
ticle falling through the funnel exit after a relatively small
number of collisions and in a relatively short time. The en-
ergy loss will also be comparably small. This gives a quali-
tative explanation of the phenomenon of sudden jumps in the
average duration, average impulse, and the average energy
loss shown in Figs. 2–4. In Sec. IV we give a theoretical
prediction about the locations of these jumps.
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FIG. 5. The duration is plotted against the ini-
tial location x0 for e=0.99 and funnels with �a�
�=59° and �b� �=61°. The behavior in �a� and
�b� is completely different even though the
change in � is very small.
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FIG. 6. Some typical particle trajectories for
e=0.99 and funnels with �a� �=59° and �b� �
=61°. In both cases, the initial horizontal location
is x0=−0.14. There is no coherent pattern of col-
lisions in �a�, but �b� shows a highly coherent
sequence of collisions.
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IV. PERIODIC ORBITS FOR e=1

Figures 2–6 showed clearly that the jumps are associated
with the occurrence of repeated collision patterns. The closer
e is to unity, the more pronounced the phenomenon is. This
leads us to study funnels with e=1 and examine the periodic
orbits in such systems. For a given angle �, a number of
periodic orbits are possible �see the left panel of Fig. 7 for
the simplest few orbits�. Each periodic orbit has a different
sequence of collisions with the funnel walls. For a given
collision sequence with m collisions, one needs to determine
if the associated orbit can exist and whether it is stable. Let xi
and yi be the location of the ith collision in the sequence and
ui and vi be the x and y components of the particle velocity
immediately before the ith collision. Since xi and yi are con-
strained to be on the funnel boundaries, we can eliminate xi
in favor of yi. Furthermore, since the total energy is con-
served, we can further eliminate yi in favor of ui and vi.
Hence the orbit is specified by the collision sequence and

vi= �ui ,vi�T. Given vi it is straightforward to calculate the
locations and velocities immediately before the �i+1�th col-
lision in the sequence. To compute vi+1 from vi, four differ-
ent cases must be considered: Flr, Frl, Fll, and Frr. Here, Flr
represents the situation in which the ith collision is with the
left wall and the �i+1�th collision is with the right wall. The
symbols Frl, Fll, and Frr are similarly defined. First, we con-
sider the derivation of Flr. The velocity after the ith collision
is

�ui�

vi�
� = � cos 2� − sin 2�

− sin 2� − cos 2�
��ui

vi
� . �1�

Due to energy conservation, we have yi=1+ 1
2d tan �

− 1
2 �ui�

2+vi�
2�. Since the trajectory is composed of parabolic

segments and each collision is constrained to coincide with
the funnel walls, we have

.
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FIG. 7. The figures in the left column show
the patterns of simple orbits for e=1. The figures
in the right column show the corresponding mag-

nitude of the eigenvalues of
�F�vi�

�vi
. The solid

curves indicate the range of � for which the cor-
responding orbit is neutrally linearly stable. The
dashed curves indicate the range of � for which
the corresponding orbit is neutrally unstable.
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yi = − xi tan � �2�

and

yi+1

xi+1
=

yi + vi�ti − 1
2 ti

2

xi + ui�ti

= tan � . �3�

This allows us to get the time between the two collisions:

ti = − sec ��ui sin 3� + vi cos 3�� + �sec2 ��ui sin 3� + vi cos 3��2 − 2�ui
2 + vi

2 − 2 − d tan �� .

The map from left wall to the right wall is thus given by

Flr: vi+1 = �ui+1

vi+1
� = � ui cos 2� − vi sin 2�

− ui sin 2� − vi cos 2� − ti
� .

Second, we consider the derivation of Fll. For both Flr and
Fll, the ith collision is with the left wall. Therefore, Eqs. �1�
and �2� still hold for Fll. However, for Fll, the �i+1�th colli-
sion is with the left wall and so Eq. �3� is replaced by

yi+1

xi+1
=

yi + vi�ti − 1
2 ti

2

xi + ui�ti

= − tan � .

We can obtain the time between collisions ti=−2ui tan �
−2vi, and the map from left wall to the left wall is given by

Fll: vi+1 = �ui+1

vi+1
� = � ui cos 2� − vi sin 2�

ui�2 tan � − sin 2�� + vi�2 − cos 2��
� .

The maps for Frl and Frr can be similarly constructed, and
the results are

Frl: vi+1 = �ui+1

vi+1
� = � ui cos 2� + vi sin 2�

ui sin 2� − vi cos 2� − ti
� ,

where

ti = sec ��ui sin 3� − vi cos 3��

+�sec2 ��ui sin 3� − vi cos 3��2 − 2�ui
2 + vi

2 − 2 − d tan ��

and

Frr: vi+1 = �ui+1

vi+1
�

= � ui cos 2� + vi sin 2�

ui�sin 2� − 2 tan �� + vi�2 − cos 2��
� .

Combining the effects of all m collisions we can therefore
construct a two-dimensional map F defined by vi+m=F�vi�.
Since the orbit is periodic, we have vi

�=F�vi
��, where stars

denote the periodic orbit. Here, we will show the calculation
of the simplest periodic orbit �see Fig. 7�a1��. The particle is
released with zero velocity, so a simple calculation gives
u1

�=0, v1
�=�2�1+ d

2 tan �+x1 tan ��; then, it jumps from left
wall to the right, so v2

�=Flr�v1
��. In order to return along the

same trajectory, the velocity before the second collision must
be perpendicular to the wall, so u2

�=−v2
� tan �. This allow us

to compute the location of the first collision and velocities
before this collision,

x1
� = x0

� =
�1 + 1

2d tan ���3 − tan2 ���5 tan2 � + 1�
3 tan5 � − 18 tan3 � − 5 tan �

,

y1
� = − x1

� tan � ,

u1
� = 0, v1

� = −�2�1 +
1

2
d tan � + x1

� tan �� ,

and also the location of the second collision and velocities
before this collision are given by

x2
� = x1

� + 2v1
�2 cos � sin 3�, y2

� = x2
� tan � ,

u2
� = − v1

� sin 2�, v2
� = 2v1

� cos2 � .

For this orbit to exist, the locations of the collisions must be
consistent with the funnel geometry which requires �xi�
�d /2−a sin � for i=1,2. For a�1 and d�1 this can be
reduced to �

6 + d
4 − a

8 ���
�
3 − d

4 +
�3a
8 . Other orbits shown in

Fig. 7 can be constructed in the same way.
Not all orbits are stable. Unstable periodic orbits cannot

be observed since any small disturbance will eventually de-
stroy the periodicity. Adding a small perturbation 	vi in vi

yields 	vi+m= � dF
dvi

�vi=vi
�	vi. Since the process is nondissipa-

tive, the map F must preserve area in the phase space and so
the 2-by-2 matrix � dF

dvi
�vi=vi

� must have unit determinant.
Therefore the characteristic polynomial of the matrix is
given by 
2−tr�� dF

dvi
�vi=vi

��
+1=0. If �tr�� dF
dvi

�vi=vi
����2, the or-

bit will be linearly neutrally stable. This means that trajecto-
ries that start sufficiently close to the periodic orbit will nei-
ther approach nor diverge from the periodic orbit while
maintaining the same collision sequence. If �tr�� dF

dvi
�vi=vi

����2,
then the orbit will be linearly unstable. In this case, trajecto-
ries that start close to the periodic orbit will diverge from the
periodic orbit until the particle can no longer follow the
given collision sequence. At this point the dynamics becomes
complicated and the trajectories can become highly sensitive
to initial conditions.

Below we derive the stability limits for the simplest orbit
shown in Fig. 7�a1�. Given the collision sequence for this
orbit, we have v2=Flr�v1�, v3=Frl�v2�, and v4=Fll�v3�. Using
the chain rule, we have
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	 dF

dv1
	

v1=v1
�

= 	dFll

dv3
	

v3=v3
�

· 	dFrl

dv2
	

v2=v2
�

· 	dFlr

dv1
	

v1=v1
�
. �4�

Using the maps given above, we obtain

dFlr

dv1
=


�u2

�u1

�u2

�v1

�v2

�u1

�v2

�v1

� = 
 cos 2� − sin 2�

− sin 2� −
�t1

�u1
− cos 2� −

�t1

�v1
� ,

where

�t1

�u1
= − sec � sin 3� +

sec2 � sin 3��u1 sin 3� + v1 cos 3�� − 2u1

�sec2 ��u1 sin 3� + v1 cos 3��2 − 2�u1
2 + v1

2 − 2 − d tan ��
,

�t1

�v1
= − sec � cos 3� +

sec2 � cos 3��u1 sin 3� + v1 cos 3�� − 2v1

�sec2 ��u1 sin 3� + v1 cos 3��2 − 2�u1
2 + v1

2 − 2 − d tan ��
.

Substituting v1
� for v1, we obtain:

	dFlr

dv1
	

v1=v1
�

= � cos 2� − sin 2�

tan ��8 cos4 � − 6 cos2 � + 1
2� 8 cos4 � − 10 cos2 � + 3

2
� .

Similarly, we get

	dFrl

dv2
	

v2=v2
�

= � cos 2� sin 2�

− tan ��16 cos4 � − 14 cos2 � + 1� 16 cos4 � − 22 cos2 � + 4
�

and

	dFll

dv3
	

v3=v3
�

=

�u4

�u3

�u4

�v3

�v4

�u3

�v4

�v3

�
= � cos 2� − sin 2�

2 tan � − sin 2� 2 − cos 2�
� .

Combining these results, �4� becomes

�a11 a12

a21 a22
� ,

where

a11 = 256 cos10 � − 896 cos8 � + 1120 cos6 � − 600 cos4 �

+ 129 cos2 � − 8,

a12 = − tan ��256 cos10 � − 768 cos8 � + 736 cos6 �

− 240 cos4 � + 21 cos2 �� ,

a21 = − tan ��256 cos10 � − 1024 cos8 � + 1440 cos6 �

− 848 cos4 � + 197 cos2 � − 13� ,

a22 = − 256 cos10 � + 1152 cos8 � − 1888 cos6 �

+ 1352 cos4 � − 393 cos2 � + 34.

The orbit will be linearly neutrally stable if �tr�� dF
dv1

�v1=v1
���

�2, which gives

�256 cos8 � − 768 cos6 � + 752 cos4 � − 264 cos2 � + 26� � 2.

We can therefore obtain the range of � in which this
orbit exists and is linearly neutrally stable, as
�� � �

4 ,arccos�3−�2
4 �= �45° ,50.97°�. Similar computations

can be performed for other orbits.
In the right panel of Fig. 7 we plot the magnitudes of the

eigenvalues as a function of the funnel angle for the corre-
sponding periodic orbits shown on the same row in the left
panel. The ranges of � for which each orbit is linearly neu-
trally stable are shown as solid curves while the unstable
ranges of � are shown as dotted curves. In particular, Fig.
7�b2� shows that the orbit shown in Fig. 7�b1� is unstable for
all values of �. The neutrally stable ranges are also marked in
Fig. 2, and one can clearly see that these ranges correspond
exactly with the ranges in which the inelastic particle stays in
the funnel for an unexpectedly long time. Moreover, the sen-
sitivity of the trajectories to initial conditions is strongly cor-
related with the stability of the associated periodic orbits.

In order to understand the extent to which the behavior of
elastic particles is dominated by periodic orbits, we have
performed simulations with an elastic particle in which we
record the x locations of the first 2000 collisions for a given
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input location. In Fig. 8 we plot the results as a function of
input location for �=61°. There are a number of periodic
orbits, and the periodic orbit shown in Fig. 7�d2� can be seen
for x0 approximately 0.33. The trajectories of particles that
have input locations in the range �0.3, 0.37� stay close to this
periodic orbit. Other orbits are also visible, for example, an
orbit with eight collisions can be seen for x0 approximately
0.27 and trajectories of particles that have input locations in
the range �0.24, 0.3� stay close to this orbit. However, there
are other regions such as �0, 0.7� and �0.47, 0.53� in which
no clear pattern exists. For �=59°, the results are dramati-
cally different. In this case, there are no clear periodic orbits
and the points denoting the collision locations fill the entire
space in the figure. Therefore we do not present this figure.

V. THEORETICAL EXPLANATION

Now we provide an explanation of the jumps that occur in
Figs. 2–4. For e�1 periodic orbits do not exist. Neverthe-
less, the particle trajectories can adopt the same collision
sequence as the corresponding elastic particle �e=1� until
near the time when the particle exits the funnel. We will refer
to these trajectories as quasiperiodic orbits. The jumps are
the remnants of the neutrally stable periodic orbits shown in
the left panel of Fig. 7. Periodic orbits exist for wide ranges
of the funnel angle �, but it is not the existence of periodic
orbits that leads to the large jumps in the mean duration,
impulse, and energy loss. Rather, it is the existence of neu-
trally stable periodic orbits that leads to the anomalous be-
havior.

The labels on Fig. 2 allow one to easily identify each
jump with the associated orbit in Fig. 7. The simpler an orbit
is, the larger the jump associated with it is. This is because
the locations of the collisions in simple orbits tend to be
relatively far away from the exit. The quasiperiodic orbit
therefore takes a relatively long time for the collision loca-

tions to move down toward the exit. On the other hand,
complicated orbits tend to have a collision whose location is
relatively near to the exit. Therefore the particle will exit the
funnel much earlier than simple trajectories. This is why the
major jumps in Figs. 2–4 can be determined by considering
the simplest few orbits. The jumps associated with more
complicated orbits have a relatively weak effect. As e gets
smaller, particles lose more energy per collision and the col-
lision locations move down toward the exit more quickly.
Consequently, even the simple orbits will stay a relatively
short time in the funnel. Therefore the jumps become less
pronounced as e decreases.

Finally, we discuss the effects of the gap size. Our nu-
merical simulations show that as one increases the gap size
the overall shapes of the curves for duration are very similar
to those shown in Figs. 2–4. For the average duration, the
average impulse, and the average energy loss, the curves are
shifted downwards as the gap size increases. The size of the
jumps decreases, but the locations of the jumps remains the
same. The reduction in jump size is larger for jumps associ-
ated with more complicated orbits. This behavior can be eas-
ily understood by considering the effects of gap width on the
existence of stable orbits.

So far, all our theoretical and numerical studies have fo-
cused on the anomalous phenomenon that occurs when a
perfectly circular particle falls through a funnel with flat sur-
faces. That is, a particle may take a longer time to fall
through a funnel with steeper walls than a funnel with less
steep walls. It is natural to ask whether the anomalous phe-
nomenon still exits when the system deviates from this per-
fect setting. To demonstrate that this phenomenon indeed ex-
ists, we first consider a perfectly circular particle falling
through a funnel whose walls are not flat. We consider walls
that have a shape chosen such that when the ball collides
with the walls, its center of mass lies on a parabola �see Fig.
9� given by y=−tan �x+ p�x+x1��x+x2� for −x2�x�−x1

and y=tan �x+ p�x−x1��x−x2� for x1�x�x2, where x1= d
2

FIG. 8. The x locations of the first 2000 collisions are plotted as
a function of the input location x0 for �=61° and e=1. The input
locations for which trajectories stay close to periodic orbits are
clearly visible. In the similar plot at �=59°, the points marking
collision locations fill the entire space. This confirms that trajecto-
ries that stay close to periodic orbits do not occur.

0 x

y

1 2

y = �tan�x+p(x+x1)(x+x2) y = tan�x+p(x-x1)(x-x2)

FIG. 9. A schematic for a system with parabolic walls. The
dotted curves are the curves that the center of the ball collides with,
and the solid curves are the boundaries of the funnel.
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−a sin � and x2= d
2 +H cot �− a

sin � . The opening of the funnel
is located at − d

2 �x�
d
2 and y=0. The parameter � that ap-

pears in the above equations is defined as the effective de-
clining angle of the funnel �see Fig. 9�. In Fig. 10, we plot
the average duration that a particle stays inside the funnel
with concave parabolic walls �p=−0.2� as a function of �. In
Fig. 11, we plot the average duration for a funnel with con-
vex parabolic walls �p=0.2�. Figures 10 and 11 clearly show
that the anomalous behavior still exists for funnels with walls
of parabolic shape. All large jumps that were present for the
case of flat walls are still present in the case of both concave
and convex parabolic walls. Furthermore, Fig. 11 shows an
additional anomalous peak near �=28°, which does not exist
in the case of flat walls. This peak is related to the periodic
orbit shown in Fig. 7�b1�, which was unstable for flat walls,
but becomes stable for convex parabolic walls.

To demonstrate that the anomalous phenomenon is not a
singular behavior of perfectly circular particles, we consider
particles with elliptic shape falling through a funnel
with parabolic walls; the shapes of walls are given by
y=−tan ��x+ d

2 �+ p�x+ d
2 ��x+ d

2 +H cot� for −� d
2 +H cot��x

�− d
2 and y=tan ��x− d

2 �+ p�x− d
2 ��x− � d

2 +H cot�� for d
2 �x

�
d
2 +H cot. The opening of the funnel is located at − d

2 �x
�

d
2 and y=0. When an elliptic-shaped particle collides with

the walls, the collisional impulse, in general, does not pass
through the center of mass of the particle and an instanta-
neous impulsive torque is exerted on the particle. This causes
the particle to rotate.

We performed simulations with long and short axes of the
elliptic particles equal to 0.0202 and 0.02, respectively. How-
ever, numerical simulations for an elliptic particle falling
through a parabolic funnel are much more time consuming
than that for a circular particle falling through a parabolic
funnel. This is due to the complexity in determining the col-

lision points for elliptic particles. However, all that is re-
quired to verify the existence of anomalous behavior is to
perform simulations with two systems with different � and
demonstrate that the system with smaller � has larger aver-
age duration than the system with larger �. We consider the
case of flat walls �p=0� with �=44° and �=46° �these angles
are those that give large jumps in the case of circular par-
ticles; see Fig. 2�. For �=44° the average duration is 45.64
and for �=46° the average duration is 91.32. We also con-
sidered elliptic particles falling through a funnel with con-
cave parabolic walls �p=−0.2� with �=36° and �=41° �as
suggested by Fig. 10�. For �=36° the average duration is
38.51 and for �=41° the average duration is 55.59. Similarly,
we also considered elliptic particles falling through a funnel
with convex parabolic walls �p=0.2� with �=45° and �
=52° �as suggested by Fig. 11�. For �=45° the average du-
ration is 29.73 and for �=52° the average duration is 78.22.
Therefore we have demonstrated the anomalous behavior
presented in a system of perfectly circular particles falling
through a funnel with flat walls can also occur in a consid-
erably larger class of systems.

In conclusion, we have studied the simple system of an
inelastic particle falling through a funnel. Counterintuitively,
an increase in the steepness of the funnel walls can lead the
particle to stay longer in the funnel, exert a larger total im-
pulsive force on the funnel walls, and lose more energy. Our
theoretical analysis shows that these phenomena are due to
the existence of neutrally stable quasiperiodic orbits.
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